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Abstract

Modern text-to-image synthesis models have achieved an exceptional level of
photorealism, generating high-quality images from arbitrary text descriptions. In
light of the impressive synthesis ability, several studies have exhibited promising
results in exploiting generated data for image recognition. However, directly sup-
plementing data-hungry situations in the real-world (e.g. few-shot or long-tailed
scenarios) with existing approaches result in marginal performance gains, as they
suffer to thoroughly reflect the distribution of the real data. Through extensive
experiments, this paper proposes a new image synthesis pipeline for long-tailed situ-
ations using Textual Inversion. The study demonstrates that generated images from
textual-inverted text tokens effectively aligns with the real domain, significantly
enhancing the recognition ability of a standard ResNet50 backbone. We also show
that real-world data imbalance scenarios can be successfully mitigated by filling
up the imbalanced data with synthetic images. In conjunction with techniques in
the area of long-tailed recognition, our method achieves state-of-the-art results on
standard long-tailed benchmarks when trained from scratch.

1 Introduction

The intricate landscape of real-world data often reveals an inherent imbalance, where the abundance
of common samples dominate the scarce presence of their rare counterparts [1, 2, 3, 4, 5, 6, 7, 8].
Long-tailed recognition is an area that aims to acquire balanced knowledge in this lopsided situation,
irrespective of different sample sizes for each class. Several works tried to mitigate this class
imbalance challenge through diverse approaches such as class-balanced sampling [9, 10, 11, 12], loss
re-weighting [13, 14, 15, 16, 17] and data augmentation [9, 11, 18, 19, 20, 21, 22, 23, 24, 25]. Recent
approaches also include decoupling methods [26, 27, 28], and the integration of mixture-of-experts
techniques [29, 30, 31, 32].

Given that the underlying motivation of these approaches revolves around re-balancing data distribu-
tions, an intuitive approach would be to fill up the imbalanced data using synthetic samples. However,
training traditional class conditional generative models under severe data imbalance is known to be
highly challenging [33, 34, 35, 36, 37], hindering the practical usages of well-established generative
models such as VAE [38] and GAN [39].

The rapid development of generative models [40, 41, 42, 43, 44, 45, 46, 47], has ushered in advance-
ments across diverse areas of machine learning. Synthetic data generation is one area where these
photorealistic images with delicate details exhibit promising results. Multiple studies [48, 49, 50, 51]
have proposed efficient methods for zero/few-shot classification, elucidating the robustness of features
acquired from synthetic data and their efficacy in transfer learning scenarios. However, these zero-shot
methods, predominantly reliant on prompting techniques, often exhibit marginal performance gains
in the presence of real data, constraining their practical usages in real-world long-tailed scenarios.



In this paper, with the help of recent large-scale text-to-image synthesis models, we effectively
address this issue by adopting per-class optimization of randomly initialized text tokens. This
work starts by evaluating a range of novel and established strategies devised for synthetic image
generation. After a thorough examination, we empirically discover that our new approach based
on Textual Inversion [52] exhibits a remarkable ability to generate diverse images that align with
the real domain without using class-related text information. Notably, by exclusively leveraging
information within the image domain, our method showcases its capability to generate classes that
were underrepresented by the original text-conditioned pretrained model. In conjunction with the
simple yet effective Balanced Softmax loss [17] and the proposed two-stage training procedure, our
method attains state-of-the-art results on standard long-tailed classification benchmarks [4, 3] when
trained from scratch. Our method especially demonstrates significantly higher accuracies in few-shot
scenarios involving classes with fewer than 20 samples.

Overall, our work makes the following key contributions: (1) We offer a comprehensive evaluation of
various generation strategies based on text-to-image synthesis models, incorporating diverse ablations
and providing valuable insights. (2) We propose a novel image generation method tailored for real-
world’s data imbalance scenarios involving Textual Inversion, which outperforms existing generation
methods. (3) In combination with our suggested two-stage training procedure and the Balanced
Softmax loss, our method achieves state-of-the-art results on standard long-tailed benchmarks when
trained from scratch.

2 Related work

2.1 Large scale text-to-image synthesis models

Recent advances in diffusion models [40, 53, 54, 55] and multimodal learning [56, 57] have led to
significant progress in the area of text-conditioned image synthesis, which was considered to be
extremely challenging with traditional conditional GANs [39, 58, 59, 60, 61]. Some notable examples
of diffusion models include GLIDE [41], Dall�E 2 [44], Imagen [45], Stable Diffusion [43], and
eDiff-I [46]. Autoregressive and GAN-based models such as Dall�E [42], Parti [62], GigaGAN [47],
and StyleGAN-T [63] have also shown very promising results. In conjunction with the advancements
of generative models, there has been extensive research on methods to personalize synthesized outputs.
Representative works include Textual Inversion [52], DreamBooth [64], and Custom Diffusion [65],
each focusing on fine-tuning different parts of diffusion models.

Among several options, we utilize Stable Diffusion, a text-conditioned variant of the Latent Diffusion
Model [43] (LDM), trained on LAION-5B [66]. LDM-based models leverage pretrained encoder and
decoder networks to perform forward and reverse diffusion processes in the latent space, reducing
the expensive compute overhead of the diffusion family. In this paper, we utilize Stable Diffusion
v1.5 [67], unless stated otherwise.

2.2 Learning from synthetic data

Building real-world datasets is often challenging due to the difficulty of collecting a balanced
set of images, as well as the inherent privacy and bias concerns involved. Simulation pipelines
from 3D engines [68, 69] or pretrained class-conditional GANs have been utilized as data sources.
For instance, GANs can generate pixel-wise annotations for semantic segmentation [70, 71] and
improve representation learning through different view generation [72, 73]. Nonetheless, synthetic
data generated from 3D engines may have domain gaps with real data and show limited diversity.
Additionally, training generative models from scratch usually requires a large amount of well-curated
data, further restricting the applicability of existing methods in data-scarce situations.

More recent approaches [48, 49, 50, 74, 51] incorporate general-purpose text-conditioned diffusion
models. He et al. [48] employed GLIDE to generate synthetic images and used them to fine-tune
CLIP [56]. Sariyildiz et al. [49] focused more on ImageNet [75] and trained models from scratch
using various prompting methods. Their common findings suggest that features learned from the
synthetic data can be robustly transferred to downstream tasks. These results highlight the crucial roles
of classifier-free guidance scale and the number of images in achieving high diversity and classification
accuracy. Different from the above approaches, Li et al. [76] directly turned pretrained diffusion
models into zero-shot classifiers, and Azizi et al. [74] fine-tuned Imagen [45] with ImageNet [75] to
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produce class-conditional model that can potentially improve ImageNet classi�cation. The use of
synthetic data from diffusion models is also becoming prevalent in other computer vision domains,
such as semantic segmentation [77], object detection [78], and semi-supervised learning [79].

However, the synthetic images generated through the aforementioned methods, which target zero-shot
scenarios, present an issue of distribution misalignment [48]. Consequently, the direct application
of these zero-shot methods in the presence of real data (e.g. long-tailed or few-shot) leads to the
generation of noisy samples that deviate from the distribution of the real data. As a result, despite the
availability of valuable real samples, these approaches struggle to further improve the performance,
as discussed in Sec. 4.3.

Considering the challenge of learning from imbalanced data for generative models [35, 36, 37],
simple strategies such as training or �ne-tuning the entire generative model under imbalanced data,
are also not practical. Moreover, employing a naïve per-class �ne-tuning approach would result in
considerable inef�ciency, as it necessitates a substantial amount of model weights to be saved with an
increasing number of classes. In this study, we effectively circumvent these issues by adopting an
ef�cient per-class tuning strategy for text tokens.

2.3 Long-tailed recognition

Re-sampling and re-weighting. The classical approach for handling long-tailed data involves
re-sampling and re-weighting. Re-sampling methods aim to generate class-balanced data by over-
sampling of minority classes [12, 80] and under-sampling of majority classes [12, 81]. However,
it is known that over-sampling can lead to over�tting on tail classes [82], while under-sampling
may result in losing valuable information from head classes [24]. Re-weighting methods tackle
this issue by assigning different weights on either the class level [14, 83, 84, 16, 85] or the instance
level [86, 87], resulting in distinct losses for each class. Nevertheless, it is known that re-weighting can
introduce instability during the training, particularly when dealing with the extreme class imbalance
in large-scale datasets.

Data augmentation. Augmenting real samples [19, 20, 21] or introducing synthetic samples [23,
88, 89] is also promising direction. Modern augmentation strategies involve transferring information
from the majority classes to the minority classes [24]. In the domain of synthetic sample generation,
some studies [9, 25] have shown successful results by generating samples at the feature level. Closer
to our work, GAMO [88] adopts a three-player adversarial game to generate feature-level samples and
uses VAE [38] to generate image-level samples. However, given the easy-to-collapse nature of the
adversarial game and the dif�culty of learning imbalanced distributions, GAMO struggles to generate
high-quality images, resulting in a marginal performance gain that is further constrained to smaller
datasets. To the best of our knowledge, our approach is the �rst to generate realistic image-level
samples that can actually perform on par or even surpass other state-of-the-art long-tailed methods.

Other long-tailed methods. Recently, decoupling the learning of representation and classi�er,
following [26], has become one of the mainstream approaches [27, 28]. Another advantage of the
decoupling method is that it can be readily combined with other techniques, such as re-sampling or
re-weighting, further amplifying its potential. Meta-learning [17, 90, 91, 92], contrastive learning [93,
94], and ensembling [29, 30, 31, 32] based methods are additional sources of recent successes.
The most recent approaches [95, 96, 97] involve using a powerful multimodal model, CLIP [56].
By incorporating additional text data acquired from the web (e.g., Wikipedia) [96] or additional
prompt-tuning [97], recent works further improved the performance of the pretrained CLIP. However,
these methods heavily rely on the strong zero-shot performance of CLIP, which already surpasses the
performances of most state-of-the-art methods. In this work, we mainly focus on learning imbalanced
distribution from scratch, with a speci�c emphasis on acquiring robust representation exclusively in
the domain of images.

3 Filling up long-tailed data with generative models

3.1 Synthetic image generation strategies

Our study begins by evaluating diverse synthetic data generation approaches and selecting the best �t
for our data-scarce scenario. As pointed out by previous work [49, 50, 74], the problem of diversity
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Figure 1: Illustration of our different generation strategies: prompt-to-image methods (Single template,
CLIP template, T5 [100], and Flan-T5 XXL [101]), image-to-image methods (Image variation [102]
and Reimagine [103]), and transmodal methods (Captioning [104] and Textual Inversion [52]).

has been problematic in utilizing text-to-image synthesis models for image recognition. Since cutting-
edge text-to-image synthesis models prioritize aligning the visual appearance with input text prompts,
they tend to generate high-�delity but low-diversity images. A straightforward approach to balance
�delity and diversity is adjusting the classi�er-free guidance scale [98] as shown in Fig. 2a.

Recent models that employ classi�er-free guidance, such as Stable Diffusion, provide the capability
to generate more diverse but slightly noisier samples by decreasing the default guidance scalew,
which is set to 7.5 in the case of Stable Diffusion. Eq. (1) demonstrates the process of classi�er-free
guidance in LDM variants [43], where� represents a denoising U-Net,t denotes a timestamp,z refers
to the latent variable, andc is a conditioning vector. Higher guidance enforces stronger conditioning
of input prompts, and it is worth noting that classi�er-free guidance is no longer adopted when the
scale is set to 1.0, reducing the necessity of an additional reverse process for null-conditioning.

~� t = � � (zt ) + w(� � (zt ; c) � � � (zt )) : (1)

To effectively address the issue of diversity, we thoroughly evaluate a range of novel and established
methods designed to generate feature-rich images and extensively compare their performances at
different guidance scales. For evaluation of the mentioned methods, we use IN100 and IN100-LT
from Sec. 4.1, generating 1,300 images per class using DDIM sampler [99] with 50 diffusion steps.
We present comprehensive qualitative results in Appendix.

Prompt-to-image based methods. The most straightforward method to utilize text-to-image
synthesis models is to use naïve prompts (e.g."a photo of a {CLS}"). However, this method, namely,
single template, is known to produce images that substantially lack diversity. Heet al. [48] and
Yuanet al. [105] introduce the use of large-scale language models and CLIP templates to alleviate
this issue. Heet al.use T5 [100] �ne-tuned on CommonGen [106] combined with CLIP �ltering
to remove noisy generated sentences. Building upon previous work, we experiment with the same
T5 [107], a larger language model (Flan-T5 XXL [101] �ne-tuned in Alpaca style [108, 109]) and a
community-famous prompt-extender [110] for Stable Diffusion which is a GPT-2 model �ne-tuned on
prompts from DiffusionDB [111]. Table 1 presents the results for four settings:single template, CLIP
templates, T5, and Flan-T5 XXL. Additional details (e.g.decoding strategies) and the performance
for Prompt-Extendcan be found in Appendix. We generally observe enhancements with more diverse
prompts when the scale isw = 7 :5, but single templateperforms the best as the scale becomes
w = 1 :0. With more noise engaged, we believe promoting diversity via complex prompts harms
precision by compromising important details of the original class.

Image-to-image based methods. While the above methods can generally be considered as zero-
shot methods, the approaches from here require real samples. For image-to-image based methods, we
utilize the state-of-the-art Stable Diffusion Reimagine [103], which replaces the CLIP text encoder
with the CLIP image encoder. Since the source images are fully encoded and the reverse process
does not originate from the noised source images, this method can produce images that differ in
both overall structure and high-frequency details. For a fair comparison, we also test a similar
variant called Image Variation [102] based on Stable Diffusion v1.3, as Reimagine is based on Stable
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Figure 2: (a) Impact of classi�er-free guidance scale on top-1 and top-5 accuracy. (b) Improvements in
top-1 accuracy when scaling number of training samples per class for different generation strategies.
(c, d) Performance ofTextual Inversionbased method with varying optimization steps used for
generation and increasing size of optimizable text embedding.

Table 1: Comparison of accuracies among diverse generation methods for IN100. Each method
generated 130K images (1,300 images per class) and synthetic images were exclusively used to train
ResNet50 [112]. Low guidance indicates a scale of 1.0 and high guidance denotes 7.5, except for
Image Variation[102] (3.0) andReimagine[103] (10.0).

Prompt-to-Image Image-to-Image Transmodal

Method Single CLIP T5 Flan-T5 Image Reimagine Image Textual
(Top-1/Top-5) Template Templates -XXL Variation Captioning Inversion

Low Guidance 59.9 / 83.7 57.2 / 82.2 45.8 / 71.5 51.6 / 77.3 47.2 / 77.1 54.2 / 80.7 55.2 / 83.762.8/ 86.2
High Guidance 41.5 / 67.5 48.7 / 73.6 36.0 / 61.0 41.3 / 67.3 42.2 / 70.9 41.5 / 68.7 45.6 / 73.649.2/ 74.3

Diffusion v2.1. We adopt real samples of IN100-LT described in Sec 4.1 as source images to evalute
the robustness of these methods in real-world data-scarce scenarios. Experimental results of these two
settings (Reimagine and Image Variation) are elaborated in Table 1. Broadly speaking, these methods
perform worse thansingle template, and through qualitative review, we attribute this to speci�c
circumstances where a "reimagined" object replaces the crucial component of an image containing
class-speci�c information. This observation aligns with the fact that this method achieves a relatively
high top-5 accuracy considering its performance on top-1. Technical details and qualitative results
are provided in Appendix.

Transmodal methods. Here, we propose two novel methods that �rst generate prompts from real
samples, then subsequently synthesize images from these prompts. We refer to this process as a
"Transmodal" or simply "image-to-prompt-to-image" approach. The �rst method utilizes the state-of-
the-art captioning model BLIP2 [104] to generate prompts and uses these prompts for sampling. The
second method utilizes Textual Inversion [52]. Using few sets of images, we optimize a text token "*"
per every class and generate images based on the prompt "a photo of a *". The results ofCaptioning
and Textual Inversioncan be found in Table 1, while additional details are provided in Appendix. We
observe thatTextual Inversionconsistently outperforms all other methods by a notable margin.

Textual Inversion details. Textual Inversion [52] is an optimization-based personalization method
designed to effectively learn the optimal text vector that best explains the concept of given samples.
Keeping Stable Diffusion's encoder (E), denoising U-net (� � ), and CLIP text encoder (c� ) frozen, Tex-
tual Inversion aims to optimize the text embedding (v� ), which is a continuous vector representation
of the text token (y), using the following objective.

v� = arg min
v

Ez�E (x ) ;y;� �N (0 ;1) ;t

h
k� � � � (zt ; t; c� (y))k2

2

i
: (2)

Our empirical results demonstrate that Textual Inversion can ef�ciently learn class-level concepts
given numerous images (i.e. head classes) and also effectively capture decisive features given few
number of images (i.e. tail classes), which is evident considering its initial tailoring for personalization
tasks involving 3-5 images. Furthermore, the experiment in Fig. 2c reveals that class-level information
is already well-learned in the early stages (500 steps) of optimization, which reduces the need for
prolonged training. From this observation, we adopt a simple heuristic based on the number of images
that restricts excessive training time and leverage checkpoints from various steps to enhance diversity.
Lastly, we observe from Fig. 2d that enlarging the token embedding's capacity from a single vector
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Figure 3: Overview of our proposed long-tailed image recognition pipeline on ImageNet-LT. During
the Stage I, the image classi�er is trained on balanced dataset, obtained by �lling up long-tailed data
with synthetic samples. Stage II �ne-tunes the image classi�er with long-tailed real dataset along
with Balanced Softmax loss [17].

of 1� 768 to 4� 768 signi�cantly improves top-1 accuracy, allowing �ner details to be captured [113].
Yet, further increasing the size of embedding (e.g.10� 768) did not yield additional gains, suggesting
that a text embedding of shape 4� 768 can adequately represent most classes.

Starting from a random text token "*", Textual Inversion consistently proves to be effective for
long-tailed data by generating images that align well with the target domain, regardless of the sample
size, without relying on any class-related text information. Especially, the high scaling ef�ciency of
this method described in Fig. 2b, provides compelling evidence of the strong potential inherent in
textual-inverted tokens. Our qualitative results even suggest its capability to generate classes that were
previously underrepresented by conventional text-conditioning. More information on the mentioned
heuristic and training, as well as supplementary qualitative results, can be found in Appendix.

3.2 Two-stage training procedure

One of the mainstream approaches in long-tailed recognition is to decouple representation learning
and classi�er learning as suggested by Kanget al. [26]. Motivated by this idea, we adopt a two-stage
training procedure. During the �rst stage, the entire model is trained on balanced dataset, obtained by
�lling up long-tailed data with synthetic samples.

In the second stage, we �ne-tune the model with only real samples on top of robust feature learned
from the �rst stage [48, 49]. Interestingly, while cRT [26] only retrains the classi�er (i.e. linear
layer), �ne-tuning the whole model with a reduced learning rate produced superior results in our case.
For both stages, we adopt Balanced Softmax loss [17], which effectively handles the discrepancy
between the posterior distributions of training and test set. Given the number of samples in each class
i (denoted asni ), and the model's output (denoted as� ), Balanced Softmax (̂� ) can be expressed as
�̂ j = n j e� j

P k
i =1 n i e� i

. In both stages, only real samples are accounted for Balanced Softmax and no other
re-sampling or re-weighting technique is adopted. The effectiveness of Balanced Softmax loss, which
harmoniously blends with our method, is demonstrated through ablation experiments in Sec. 4.5.

3.3 Comparison with existing methods

Here, we clarify the differences between our method and previous works [48, 49, 74] on synthetic
data generation. Heet al. [48] and Sariyildizet al. [49] mainly focus on the zero-shot learning and
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